- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Bresciani, Etienne (1)
-
Chen, Michael_A (1)
-
Kang, Peter_K (1)
-
Lee, Woonghee (1)
-
Toner, Brandy_M (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Mineral dissolution releases ions into fluids and alters pore structures, affecting geochemistry and subsurface fluid flow. Thus, mineral dissolution plays a crucial role in many subsurface processes and applications. Pore‐scale fluid flow often controls mineral dissolution by controlling concentration gradients at fluid‐solid interfaces. In particular, recent studies have shown that fluid inertia can significantly affect reactive transport in porous and fractured media by inducing unique flow structures such as recirculating flows. However, the effects of pore‐scale flow and fluid inertia on mineral dissolution remain largely unknown. To address this knowledge gap, we combined visual laboratory experiments and micro‐continuum pore‐scale reactive transport modeling to investigate the effects of pore‐scale flow and fluid inertia on mineral dissolution dynamics. Through flow topology analysis, we identified unique patterns of 2D and 3D recirculating flows and their distinctive effects on dissolution. The simulation results revealed that 3D flow topology and fluid inertia dramatically alter the spatiotemporal dynamics of mineral dissolution. Furthermore, we found that the 3D flow topology fundamentally changes the upscaled relationship between porosity and reactive surface area compared to a conventional relationship, which is commonly used in continuum‐scale modeling. These findings highlight the critical role of 3D flow and fluid inertia in modeling mineral dissolution across scales, from the pore scale to the Darcy scale.more » « less
An official website of the United States government
